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The Iconic Connection

The Arctic School, Äkäslompolo, Finland, 1982.
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The Berkeley Connection
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Introduction : Anisotropic Flow

• Exciting results
from RHIC
on the elliptic
flow, a measure
of azimuthal
anisotropy.
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Introduction : Anisotropic Flow

• Exciting results
from RHIC
on the elliptic
flow, a measure
of azimuthal
anisotropy.

• Obtained from
asymmetric
collisions of two
nuclei, with
their centres not
aligned.
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•
v2(y, pT ) =

∫
dφ dN/(pTdPTdφdy) cos(2φ)∫

dφ dN/(pTdPTdφdy)
(1)
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•
v2(y, pT ) =

∫
dφ dN/(pTdPTdφdy) cos(2φ)∫

dφ dN/(pTdPTdφdy)
(1)

• (STAR Collaboration, Ackermann et al., PRL 86 (2001) 402.)
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•
v2(y, pT ) =

∫
dφ dN/(pTdPTdφdy) cos(2φ)∫

dφ dN/(pTdPTdφdy)
(1)

• (STAR Collaboration, Ackermann et al., PRL 86 (2001) 402.)

• Good agreement with ideal hydro: Suggesting early thermalization and perfect
fluid and many more interesting things.
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(S. Voloshin, QM06, JPG 31 (2007) S883 & Hydro Curve: Kolb-Sollfrank-Heinz, PRC 62 (2000) 054909.)
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(STAR Collaboration, JPG 31 (2005) S437 & P. Huovinen.)

• Mass Pattern as expected by Hydrodynamics Models. Quantitative agreement
depends on the equation of state.
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(S. Voloshin, QM02, STAR PRL 95 (2005) & PHENIX PRL 98 (2007))

• v2 scales as number of quarks. Thus, hadrons appear to follow the ‘underlying’
quark flow as Recombination Model would suggest.
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(STAR Collaboration, Adams et al., PRL 92 (2004) 052302.)

♥ Minimum Bias Au+Au Collisions at 200 GeV/c : Strangeness flows like normal
hadrons.
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• Naıvely expect heavy
quark relaxation time
to be M/T times
larger, leading to
the expectation of
small/zero flow for
charm quarks.
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• Naıvely expect heavy
quark relaxation time
to be M/T times
larger, leading to
the expectation of
small/zero flow for
charm quarks.

• In models (Moore-Teaney,

PRC 71, 2005), heavy quark
diffusion coefficients
governs its elliptic
flow and suppression.
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• Denoting by D the
heavy quark diffusion
coefficient, D = 12/2πT ,
a ‘perturbative’ estimate,
seems to under-predict v2
substantially.

• Smaller D ' 3/2πT
seems required by data.
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• Denoting by D the
heavy quark diffusion
coefficient, D = 12/2πT ,
a ‘perturbative’ estimate,
seems to under-predict v2
substantially.

• Smaller D ' 3/2πT
seems required by data.

• Similar value also explains
the suppression in the
PHENIX RAA for heavy
quarks at RHIC.

• Other models, e.g. van
Hees-Greco-Rapp, seem
to suggest the same.
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ALICE overview at SQM11, Krakow, Poland by Francesco Prino.
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ALICE overview at SQM11, Krakow, Poland by Francesco Prino.

Collective Dynamics in High Energy Collisions, Lawrence Berkeley National Laboratory, USA, May 17, 2012 R. V. Gavai Top 14



• Heavy Quark Diffusion coefficient is much smaller than perturbative estimates
(2πDT ∼ 20 to ∼ 80).

• 2πDT ' 1.5− 3 seems required by data.

• Is it non-perturbative ?
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• Heavy Quark Diffusion coefficient is much smaller than perturbative estimates
(2πDT ∼ 20 to ∼ 80).

• 2πDT ' 1.5− 3 seems required by data.

• Is it non-perturbative ? Strong coupling models — AdS/CFT based — do lead
to values in the desired range under “suitable” assumptions [Casalderrey-Solana & Teaney

(2006), Gubser(2007)]

• Can Lattice QCD shed some light on the Charm Flow ?
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Langevin Model for Heavy Q Thermalization

• Momentum transfer from a thermal gluon is ∼ T at most. It takes ∼M/T
collisions to change momentum of the heavy Q by O(1).

• Its interaction with the medium can be modelled as uncorrelated momentum
kicks (Moore-Teaney, PRC 71 (2005) 064904) : A Langevin Model.
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Langevin Model for Heavy Q Thermalization

• Momentum transfer from a thermal gluon is ∼ T at most. It takes ∼M/T
collisions to change momentum of the heavy Q by O(1).

• Its interaction with the medium can be modelled as uncorrelated momentum
kicks (Moore-Teaney, PRC 71 (2005) 064904) : A Langevin Model.

dpi
dt

= −ηD pi + ξi(t) 〈ξi(t)ξj(t′)〉 = κδijδ(t− t′) (2)

• ηD – momentum drag coefficient and 3κ is mean-squared momentum transfer
per unit time, κ = 1

3

∫∞
−∞ dt

∑
i〈ξi(t)ξi(0)〉.
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Langevin Model for Heavy Q Thermalization

• Momentum transfer from a thermal gluon is ∼ T at most. It takes ∼M/T
collisions to change momentum of the heavy Q by O(1).

• Its interaction with the medium can be modelled as uncorrelated momentum
kicks (Moore-Teaney, PRC 71 (2005) 064904) : A Langevin Model.

dpi
dt

= −ηD pi + ξi(t) 〈ξi(t)ξj(t′)〉 = κδijδ(t− t′) (2)

• ηD – momentum drag coefficient and 3κ is mean-squared momentum transfer
per unit time, κ = 1

3

∫∞
−∞ dt

∑
i〈ξi(t)ξi(0)〉.

• Diffusion constant D can be shown to be 2T 2/κ with ηD = κ/2MT .
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• Moore-Teaney assumed an initial power-law (LO pQCD) transverse momentum
distribution of a heavy Q in an expanding QGP at T0 = 300 MeV. Assuming an
ideal Bjorken expansion of the plasma, they showed that by Tf = 165 MeV the
charm distribution approximates a thermal one provided D ≤ 3/2πT .

• Their comparison, including a more realistic hydro-simulation, which I showed
earlier also, supports such a conclusion.
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• Casalderrey-Solana & Teaney ( PRD 74 (2006) 085012) suggested to obtain κ from a
correlator of the (colour) force exerted on a heavy Q by the (deconfined &
coloured) medium.

• Caron-Huot, Laine & Moore (JHEP 0904, 053) provided a suitable definition for κ for
a lattice evaluation: The force acting on the heavy quark is given by M dJ i/dt,
where Jµ(~x, t) = ψ̄(~x, t)γµψ(~x, t) is the conserved current for the heavy quark.
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• Casalderrey-Solana & Teaney ( PRD 74 (2006) 085012) suggested to obtain κ from a
correlator of the (colour) force exerted on a heavy Q by the (deconfined &
coloured) medium.

• Caron-Huot, Laine & Moore (JHEP 0904, 053) provided a suitable definition for κ for
a lattice evaluation: The force acting on the heavy quark is given by M dJ i/dt,
where Jµ(~x, t) = ψ̄(~x, t)γµψ(~x, t) is the conserved current for the heavy quark.

• Using Heavy Quark Effective Theory, they narrowed it down to studying

GLat
E (τ) = − 1

3L

∑3
i=1

〈
Re tr

[
U(β, τ) Ei(τ,~0) U(τ, 0) Ei(0,~0)

]〉
, where L

is the Polyakov loop.
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• Casalderrey-Solana & Teaney ( PRD 74 (2006) 085012) suggested to obtain κ from a
correlator of the (colour) force exerted on a heavy Q by the (deconfined &
coloured) medium.

• Caron-Huot, Laine & Moore (JHEP 0904, 053) provided a suitable definition for κ for
a lattice evaluation: The force acting on the heavy quark is given by M dJ i/dt,
where Jµ(~x, t) = ψ̄(~x, t)γµψ(~x, t) is the conserved current for the heavy quark.

• Using Heavy Quark Effective Theory, they narrowed it down to studying

GLat
E (τ) = − 1

3L

∑3
i=1

〈
Re tr

[
U(β, τ) Ei(τ,~0) U(τ, 0) Ei(0,~0)

]〉
, where L

is the Polyakov loop.

• The spectral function, ρ(ω), is obtained from the GE(τ) , as usual, by

GE(τ) =

∫ ∞
0

dω

π
ρ(ω)

coshω(τ − 1
2T )

sinh ω
2T

· (3)
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• Then momentum diffusion coefficient κ = limω→0
2T
ω ρ(ω). where ρ is the

spectral function obtained from G above.

• They also suggested a suitable discrete version for Lattice QCD :
Ei(~x, τ) = Ui(~x, τ) U4(~x+ î, τ) − U4(~x, τ) Ui(~x+ 4̂).
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• Then momentum diffusion coefficient κ = limω→0
2T
ω ρ(ω). where ρ is the

spectral function obtained from G above.

• They also suggested a suitable discrete version for Lattice QCD :
Ei(~x, τ) = Ui(~x, τ) U4(~x+ î, τ) − U4(~x, τ) Ui(~x+ 4̂).

• Using this, the numerator can be written as a derivative of an extended (by
spatial detour of a) Polyakov loop.
GiE,num(τ) = Ci(τ + 1) + Ci(τ − 1)− 2Ci(τ)

Ci(τ) =
∏t−1
x4=0U4(x4) · Ui(t) ·

∏t+τ−1
x4=t

U4(x4) · U†i (t+ τ) ·
∏β−1
x4=t+τ

U4(x4).

Graphical Representation of C(τ).
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Our Lattice Results

• It is well-known that the Polyakov loop becomes exponentially small with Nτ .
The extraction of κ, on the other hand, needs large Nτ .
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Our Lattice Results

• It is well-known that the Polyakov loop becomes exponentially small with Nτ .
The extraction of κ, on the other hand, needs large Nτ .

• We attempted Nτ = 12, 16, 20 and 24 for quenched QCD. Multilevel algorithm
(Lüscher-Weisz, JHEP 0109 & 0207) was suitably adopted.

• For the same size error on G(10)[G(3)] on Nτ = 20 lattices, it was found to be
∼ 2500[200] times more efficient: Very crucial in getting κ.
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Our Lattice Results

• It is well-known that the Polyakov loop becomes exponentially small with Nτ .
The extraction of κ, on the other hand, needs large Nτ .

• We attempted Nτ = 12, 16, 20 and 24 for quenched QCD. Multilevel algorithm
(Lüscher-Weisz, JHEP 0109 & 0207) was suitably adopted.

• For the same size error on G(10)[G(3)] on Nτ = 20 lattices, it was found to be
∼ 2500[200] times more efficient: Very crucial in getting κ.

• Spatial volumes are such that Ns ≥ 2Nτ .

• Couplings were chosen suitably to make simulations at T/Tc = 1.04, 1.09,
1.24, 1.5 and 1.96 for the two largest Nτ .

• Typical Statistics : Few hundred Independent Configurations, with a few
thousand multilevel updates.
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• Large τ region shows scaling.

• Low τ region, on the other hand, has only lattice artifacts.
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Extracting D

• Getting to the spectral function ρ, an ill-posed problem, has attracted a lot of
attention. Many methods can be tried.

• We use an ansatz for ρ, obtain G from it, and then fit in the large τ range
[Nτ/4, Nτ/2]
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Extracting D

• Getting to the spectral function ρ, an ill-posed problem, has attracted a lot of
attention. Many methods can be tried.

• We use an ansatz for ρ, obtain G from it, and then fit in the large τ range
[Nτ/4, Nτ/2]

• ρ(ω) = aωΘ(ω − Λ) + bω3

First term is the due to the expected DIFFusion constant, and the second is
motivated by leading perturbation theory (LOC)

• Λ = 3T used; varied from 2 to ∞ for systematic error.
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♠ Contribution of the two terms shown as DIFF and LOC.
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♠ Comparing the DIFF fit with the data after eliminating the LOC.
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♠ Variation of a with the cut-off Λ and the temperature.
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♠ Our fit parameter a κ modulo the renormalization factor for the electric
fields.

♠ We use the tadpole factor. It is ∼ 1.2 as evaluated from our plaquette values.
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♠ Our fit parameter a κ modulo the renormalization factor for the electric
fields.
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♠ Multiplying by T , obtain D, the quantity used by Moore-Teaney and PHENIX.
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♥ In broad agreement with (preliminary) Bielefeld estimates (Ding et al. 1107.0311,1204.4945;

Francis et al. 1109.3941): they get a factor ∼ 2 smaller value with similar errorbars.
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♠ The ω3 term comes with g2. Use as a scheme to define αs non-perturbatively.
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 1  1.5  2

α
s
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♥ In agreement with other similar estimates (Ding et al. PRD 83 (2011) 034504).
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J/ψ: Flows or not ?

♣ The diffusion coefficient D results from colour interactions. Expect it to be
zero for the colourless J/ψ, leading to very small flow for it due to its large mass.

♦ But the thermal charm may be in abundance and may also obey the nq-scaling.
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J/ψ: Flows or not ?

♣ The diffusion coefficient D results from colour interactions. Expect it to be
zero for the colourless J/ψ, leading to very small flow for it due to its large mass.

♦ But the thermal charm may be in abundance and may also obey the nq-scaling.

♠ If thermal charm ‘recombines’ to produce many J/ψ, then one expects J/ψ to
flow still.

♣ If colour octet J/ψ propagates in QGP, then also one expects J/ψ to flow a lot.

♥ The STAR collaboration presented results for J/ψ flow in the recent Quark
Matter 2011.
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Summary

• We have obtained the diffusion
constant D as a function of T/Tc
in quenched QCD in the temperature
range of interest to RHIC and LHC.

• Our results for DT are almost constant
in the range studied.
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Summary

• We have obtained the diffusion
constant D as a function of T/Tc
in quenched QCD in the temperature
range of interest to RHIC and LHC.

• Our results for DT are almost constant
in the range studied.

• The value itself is tantalisingly close
to what PHENIX data needs in the
Moore-Teaney model.
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Summary

• We have obtained the diffusion
constant D as a function of T/Tc
in quenched QCD in the temperature
range of interest to RHIC and LHC.

• Our results for DT are almost constant
in the range studied.

• The value itself is tantalisingly close
to what PHENIX data needs in the
Moore-Teaney model.

 0

 8

 16

 24

 1  1.5  2

2
π
 D

T

T/Tc

PHENIX

0.25 * LOPT

It would be interesting to see if DT vs. T/Tc exhibits similar
flavour independence as the pressure.
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1 2 3 4 5 6 7 8 9 1110 12 1

xi

τ

β 6.76 6.80 6.90 7.192 7.255
Nτ 20 20 20 24 20
T/Tc 1.04 1.09 1.24 1.5 1.96

Table 1: List of lattices on which diffusion coefficients were extracted,

and the temperatures.
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